Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Data ; 10(1): 367, 2023 06 07.
Article in English | MEDLINE | ID: covidwho-20232780

ABSTRACT

An impressive number of COVID-19 data catalogs exist. However, none are fully optimized for data science applications. Inconsistent naming and data conventions, uneven quality control, and lack of alignment between disease data and potential predictors pose barriers to robust modeling and analysis. To address this gap, we generated a unified dataset that integrates and implements quality checks of the data from numerous leading sources of COVID-19 epidemiological and environmental data. We use a globally consistent hierarchy of administrative units to facilitate analysis within and across countries. The dataset applies this unified hierarchy to align COVID-19 epidemiological data with a number of other data types relevant to understanding and predicting COVID-19 risk, including hydrometeorological data, air quality, information on COVID-19 control policies, vaccine data, and key demographic characteristics.


Subject(s)
COVID-19 , Humans , Air Pollution , COVID-19/epidemiology , Pandemics , Environment
2.
EBioMedicine ; 89: 104482, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2257644

ABSTRACT

BACKGROUND: Since the US reported its first COVID-19 case on January 21, 2020, the science community has been applying various techniques to forecast incident cases and deaths. To date, providing an accurate and robust forecast at a high spatial resolution has proved challenging, even in the short term. METHOD: Here we present a novel multi-stage deep learning model to forecast the number of COVID-19 cases and deaths for each US state at a weekly level for a forecast horizon of 1-4 weeks. The model is heavily data driven, and relies on epidemiological, mobility, survey, climate, demographic, and SARS-CoV-2 variant frequencies data. We implement a rigorous and robust evaluation of our model-specifically we report on weekly performance over a one-year period based on multiple error metrics, and explicitly assess how our model performance varies over space, chronological time, and different outbreak phases. FINDINGS: The proposed model is shown to consistently outperform the CDC ensemble model for all evaluation metrics in multiple spatiotemporal settings, especially for the longer-term (3 and 4 weeks ahead) forecast horizon. Our case study also highlights the potential value of variant frequencies data for use in short-term forecasting to identify forthcoming surges driven by new variants. INTERPRETATION: Based on our findings, the proposed forecasting framework improves upon the available state-of-the-art forecasting tools currently used to support public health decision making with respect to COVID-19 risk. FUNDING: This work was funded the NSF Rapid Response Research (RAPID) grant Award ID 2108526 and the CDC Contract #75D30120C09570.


Subject(s)
COVID-19 , Deep Learning , Humans , United States , SARS-CoV-2 , Benchmarking , Forecasting
3.
Lancet Infect Dis ; 22(12): e370-e376, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2004660

ABSTRACT

On Jan 22, 2020, a day after the USA reported its first COVID-19 case, the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE) launched the first global real-time coronavirus surveillance system: the JHU CSSE COVID-19 Dashboard. As of June 1, 2022, the dashboard has served the global audience for more than 30 consecutive months, totalling over 226 billion feature layer requests and 3·6 billion page views. The highest daily record was set on March 29, 2020, with more than 4·6 billion requests and over 69 million views. This Personal View reveals the fundamental technical details of the entire data system underlying the dashboard, including data collection, data fusion logic, data curation and sharing, anomaly detection, data corrections, and the human resources required to support such an effort. The Personal View also covers the challenges, ranging from data visualisation to reporting standardisation. The details presented here help develop a framework for future, large-scale public health-related data collection and reporting.


Subject(s)
COVID-19 , Humans , Universities , Data Collection , Public Health
4.
Lancet Infect Dis ; 20(11): 1247-1254, 2020 11.
Article in English | MEDLINE | ID: covidwho-621939

ABSTRACT

BACKGROUND: Within 4 months of COVID-19 first being reported in the USA, it spread to every state and to more than 90% of all counties. During this period, the US COVID-19 response was highly decentralised, with stay-at-home directives issued by state and local officials, subject to varying levels of enforcement. The absence of a centralised policy and timeline combined with the complex dynamics of human mobility and the variable intensity of local outbreaks makes assessing the effect of large-scale social distancing on COVID-19 transmission in the USA a challenge. METHODS: We used daily mobility data derived from aggregated and anonymised cell (mobile) phone data, provided by Teralytics (Zürich, Switzerland) from Jan 1 to April 20, 2020, to capture real-time trends in movement patterns for each US county, and used these data to generate a social distancing metric. We used epidemiological data to compute the COVID-19 growth rate ratio for a given county on a given day. Using these metrics, we evaluated how social distancing, measured by the relative change in mobility, affected the rate of new infections in the 25 counties in the USA with the highest number of confirmed cases on April 16, 2020, by fitting a statistical model for each county. FINDINGS: Our analysis revealed that mobility patterns are strongly correlated with decreased COVID-19 case growth rates for the most affected counties in the USA, with Pearson correlation coefficients above 0·7 for 20 of the 25 counties evaluated. Additionally, the effect of changes in mobility patterns, which dropped by 35-63% relative to the normal conditions, on COVID-19 transmission are not likely to be perceptible for 9-12 days, and potentially up to 3 weeks, which is consistent with the incubation time of severe acute respiratory syndrome coronavirus 2 plus additional time for reporting. We also show evidence that behavioural changes were already underway in many US counties days to weeks before state-level or local-level stay-at-home policies were implemented, implying that individuals anticipated public health directives where social distancing was adopted, despite a mixed political message. INTERPRETATION: This study strongly supports a role of social distancing as an effective way to mitigate COVID-19 transmission in the USA. Until a COVID-19 vaccine is widely available, social distancing will remain one of the primary measures to combat disease spread, and these findings should serve to support more timely policy making around social distancing in the USA in the future. FUNDING: None.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Models, Statistical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Government Regulation , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Public Health , Quarantine/methods , SARS-CoV-2 , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL